
CPS222 Lecture: Balanced Binary Search Trees

last revised  March 23, 2015
Objectives:

1. To introduce (2,4) (also known as 2-3-4) trees and their red-black 
representation

Materials:

1. Slide show showing various operations on a Red-Black tree

I. Introduction to Balanced Binary Search Trees

A. We have seen that all operations on a binary search tree (lookup, 
insert, and delete) can be done in O(h) time, where h is the height of 
the tree.  However, depending on the order in which insertions are 
done, h can vary from a minimum of log n to a maximum of n, where 
n is the number of nodes.  Optimum performance requires that we 
somehow ensure that the tree is balanced, or nearly so.

B. Actually, there are two different ways of approaching balancing a tree:

1. Height balancing attempts to make both subtrees of each node have 
equal - or nearly equal - height.  It results, then, in a tree whose 
height differs only slightly from the optimal value of log n.

2. Weight balancing takes into account the PROBABILITIES of 
accessing the different nodes - assuming such information is 
known to us.  It puts the nodes that are accessed most frequently 
nearest the root of the tree.

3. In general, weight balancing is an appropriate optimization only 
for static trees - i.e. trees in which the only operations performed 
after initial construction are lookups (no inserts, deletes.)  Such 
search trees are common, though, since programming languages, 
command interpreters and the like have lists of reserved or 
predefined words hat need to be searched regularly.  Of course, 

1



weight balancing also requires advance knowledge of probability 
distributions for the accesses.

C. For now, we will first consider various structures and algorithms for  
height-balanced trees.  We will consider an example of a weight-
balanced binary search tree later in the course.

D. One further note: you recall that earlier in the course we mentioned 
that there are two different ways of defining the height of a tree:

1. Measure height in terms of the number of EDGES on the longest 
path from root to a leaf - hence a one-node tree has height = 0 (and 
an empty tree has height -1).

2. Measure height in terms of the number of NODES on the longest 
path from root to a leaf - hence a one-node tree has height = 1 (and 
an empty tree has height 0.)

3. The author of your text uses the first definition.  For discussions of 
binary search trees, the second definition is actually a bit more 
appropriate - since we do one key comparison at each NODE, the 
height of the tree, defined this way, turns out to be the maximum 
number of key comparisons needed when searching for a given 
value in  the tree.  (This also gives a more intuitive definition!)

II. Height-Balanced Binary Search Trees

A. It is easy to show that a binary search tree containing n nodes can have 
a height that could be as great as n and as small as ceiling(log(n+1)).  

Example: n = 7 

2



Worst case 	

 	

 	

 	

 	

 	

 Best case
( )                                  ( )
 |                                 /     \
( )                              ( )     ( )
 |                               / \     / \
( )                            ( ) ( ) ( ) ( )
 |
( )
 |
( )
 |
( )
 |
( )

height = 7 (nodes)              Height = 3 (nodes)

1. It is also easy to show, by experiment, that inserting keys into a 
tree in random order using an algorithm such as we have discussed 
previously typically results in a tree whose height is some small 
constant multiple of log n.   (You will experiment with this in lab)

2. The problem comes in when we insert keys in a non-random order 

If we use the standard binary tree insertion algorithm we looked at 
when we studied BSTS earlier, what orders of insertion would 
result in a tree like our worst case?

ASK

There are many, but the most obvious are insertion in either strict 
alphabetic order or strict reverse alphabetic order!  While the latter 
is unlikely, the former is quite possible if we are using sorted data 
to begin with!

3. Our goal, then, is to come up with some strategy that guarantees 
logarithmic height regardless of insertion order - typically by 
performing some rebalancing operation from time to time during 

3



insertion (which operation must not increase the complexity of 
insertion beyond O(h)).

B. Several strategies have been devised for maintaining binary search 
trees with height O(log n), regardless of the order in which the keys 
are  inserted.  Three are discussed in the book:

1. The AVL tree strategy, so-called after its two inventors:  Adelson-
Velski and Landis.

2. The Splay tree strategy, which does not guarantee.that every 
individual operation will be O(log n), but guarantees that the 
average cost of all operations (the amortized cost) is O(log n).

3. The Red-Black tree strategy.  (You'll see the reason for the name soon.)

C. Since time does not permit discussing all the options in depth, we will 
only discuss the latter.  This strategy is of particular interest because it 
is the one used by the TreeMap and TreeSet collections in Java and by 
the STL map, set, multimap and multiset containers.

III. (2,4) (Also Known as 2,3,4) Trees

A. As it turns out, the best way to approach the Red-Black tree strategy is 
by first considering a search tree that is not binary called a 2-3-4 tree.  
(Your book calls this a (2,4) tree. We will then show how 2-3-4 trees 
can be realized by Red-Black binary trees, which are what is actually 
used in practice.

B. A 2-3-4 tree is a search tree in which each node has 2, 3, or 4 children  
and contains 1, 2, or 3 keys - e.g.

a) A 2 node:
                                   ( k )
               /       \
All keys are < k       All keys are > k

4



2. A 3 node:
                  ( k1 k2 )   (where k1 < k2)
               /      |     \
  All keys are < k1   |   All keys are > k2 
                      |
         All keys lie between k1 and k2 

3. A 4 node:
                ( k1 k2 k3 )  (where k1 < k2 < k3)
             /      |  |    \
All keys are < k1   |  |   All keys are > k3
                    |  |
All keys lie between    All keys lie between
k1 and k2               k2 and k3

C. Such a tree can be searched by an extension of our binary search tree 
algorithms.  We won't consider this, though, because we will 
eventually use a different representation for the tree.

D. Of more interest is the problem of maintaining the tree.

E. As always, we will insert new keys at the bottom of the tree.  But now 
we have several possibilities:

1.  If we encounter a 2 node or a 3 node whose children are all 
NULL, instead of creating a new node we will add the key to the 
existing node.  Example - Insert Raccoon into:
                    
                   Fox   Jackal
                /      |           \
Aardvark Cow Dog  Goose Iguana      Zebra

The rightmost node becomes:         Raccoon Zebra

If, instead, we inserted Hippo, the center node would become 
Goose Hippo Iguana

5



2. If we encounter a 4 node whose children are all NULL, we need to 
SPLIT the 4 node into two 2 nodes, and pass the middle key up to 
its  parent, and then insert the new key in the appropriate half - e.g. 
Insert Elephant the above tree (starting with the original tree):

Split the four node, moving the middle key into the parent:

          Cow        Fox       Jackal
        /        |         |            \
Aardvark        Dog      Goose Iguana      Zebra

Insert the new key into the appropriate half of the split node:

         Cow        Fox       Jackal
        /        |         |            \
Aardvark  Dog Elephant   Goose Iguana      Zebra

(Note that the split is done BEFORE the insertion.)

3. However, there is one place where this strategy can get us into 
trouble.  Suppose, when we split a four node, its parent is also a 
four node?   Then, we have no room to insert the key in the parent.

a) This can be handled by simply splitting the parent and 
promoting one of its keys - which in turn could cause another 
split etc. This can get messy.

b) A cleaner alternative is to adopt a policy of ALWAYS 
SPLITTING  any four node we encounter going down the tree 
on a search.

(1)Even if we don't have to do so immediately, we will 
probably have to do so eventually.

(2)This ensures whenever we split a node that its parent will be 
either a 2 node or a 3 node, with room for the promoted key.

6



4. One special case remains - the root.  If the root of the tree is a four 
node, what do we do?  (Where do we put the promoted key?)

a) The answer is that we create a new two node to become the root of 
the tree, which adopts the two halves of the original root - e.g.

Before:

             Cow   Fox    Jackal

After:
                    Fox
                  /    \
             Cow        Jackal

b) When this occurs, the overall tree increases its height by one. 
However, this will be a rather rare occurrence, since two 
promotions from below (each the result of splitting a four node) 
will have to occur before the root again needs to split.

5. One interesting property of a 2-3-4 tree is that it is ALWAYS 
height-balanced.  In particular:

a) Either all the children of a node are NULL or none of them are.

b) All the nodes with NULL children are at the same level.

This follows from the fact that we never insert new nodes into 
the tree; rather, we insert into or split existing nodes.  The only 
way the height of the tree ever increases is when the root splits, 
and this affects all leaves equally.

Example: insert T H E  Q U I C K  B R O W N  into an initially 
empty 2-3-4 tree.

Develop with class

7



T              [ T ]

H              [ H T ]

E              [ E H T ]

Q                 [ H ]
                  /    \
               [ E ]  [ Q T ]

U                [ H ]
                  /    \
               [ E ]  [ Q T U ]

I                  [ H   T ]
                  /    |     \
            [ E ]   [ I Q ]  [ U ]

C                 [ H   T ]
                  /    |     \
          [ C E ]   [ I Q ]  [ U ]

K                    [ H   T ]
                  /   |      \
          [ C E ]  [ I K Q ]   [ U ]

B                   [ H   T ]
                  /    |      \
          [ B C E ] [ I K Q ]   [ U ]

R                   [ H     K     T ]
                  /    |     |     \
          [ B C E ]  [ I ] [ Q R ]  [ U ]

O                        [ K ]
                     /        \
               [ H ]           [ T ]
               /   \          /     \
       [ B C E ]  [ I ]  [ O Q R ]  [ U ]

8



W                        [ K ]
                     /        \
               [ H ]           [ T ]
               /   \          /     \
       [ B C E ]  [ I ]  [ O Q R ]  [ U W ]

N                        [ K ]
                     /        \
               [ H ]           [ Q T ]
               /   \          /    |    \
       [ B C E ]  [ I ]  [ N O ] [ R ]  [ U W ]

Question: what sequence of keys would most quickly lead to 
another insertion into the root?

Answer: X Y M P 

Observe that this would not lead to splitting the root - which 
would require a great many more insertions

F. Let's analyze the efficiency of operations on a 2-3-4 tree.  

1. Clearly insert and locate are O(h).  (We don't consider delete here, 
because it is considerably more complex to implement; however, it 
too is O(h)).

2. What is the relationship between the number of KEYS in a 2-3-4 
tree (n) and its height (h)?  (Note: we worry about keys, not 
number of nodes.)

a) To answer this question, we can consider the related problem of 
determining the MINIMUM number of keys in a 2-3-4 tree of height 
h. Clearly, such a tree would have every node a two node.  Thus, we 
would have:  

9



Level  Number of      Number of      Total number
       nodes at level keys at level  of keys
                 
1      1              1              1
2      2              2              3
3      4              4              7
4      8              8              15

So in the worst case, in a 2-3-4 tree of height h, the the total number 
of keys at all levels is equal to 2h - 1.  That is, h is O(log2 n) (since the 
-1 becomes vanishingly insignificant as h increases).

b) By similar reasoning on a MAXIMAL tree we get

Level  Number of      Number of      Total number
       nodes at level keys at level  of keys
                 
1      1              3              3
2      4              12             15
3      16             48             63
4      64             192            255

So in the best case, in a 2-3-4 tree of height h, the the total number of 
keys at all levels is equal to 4h - 1.  That is, h is O(log4 n) (since the -1 
becomes vanishingly insignificant as h increases).   But since log4 n is 
0.5 * log2 n, we can regard h - and hence the effort for lookup, insert, 
and delete - as O(log2 n) for any 2-3-4 tree, regardless of whether it is 
minimal, maximal, or somewhere in between.

10



IV.Red-Black Trees

A. We have seen that 2-3-4 trees represent a nice way of maintaining a 
balanced search tree.  Unfortunately, the code to maintain and use them is 
made complex by the fact that we have to deal with three different types of 
node.  

One could use a single type of node with a small integer field that would 
store 2, 3, or 4 to indicate the number of children (or 1, 2, or 3 to indicate the 
number of keys).  But that would result in wasting a lot of space - e.g. all 
nodes would need room for 3 keys, but a 2-node would only hold 1 key etc.

B. We now consider a type of tree called a red-black tree  that 
implements the principle of the 2-3-4 tree more easily / efficiently.

1. A red-black tree is a binary tree in which we associate a COLOR 
(red or black) with each link.  (This can be implemented by two 
extra bits in each node, or perhaps by a single tag bit on each 
pointer,  using a strategy similar to that used for threaded trees.)

2. We can represent a 2-3-4 tree by a red-black tree as follows:

 two node                       ( )        / = black ptr
                  /   \             //= red ptr

three node                     ( )      or     ( )
                 //   \           /   \\
               ( )                    ( )
              /   \                  /   \

four node            ( )
                  // \\
                ( )   ( )
                / \   / \

That is, a 2-3-4 tree node is represented by a binary tree of height 1 
or 2, with red pointers used to maintain the internal structure and 
black pointers used to refer to other nodes.

11



3. This kind of tree has several interesting properties:

a) Our lookup algorithm is the same as for an ordinary binary 
search tree.

b) The number of black links on any path from root to leaf is the 
same for all paths in the tree.

c) On any path from root to leaf, we never encounter two 
successive red links.  Thus, the total number of links on any 
path from root to leaf is at most twice the number of links in the 
corresponding 2-3-4 tree.  (This relates to our demonstration 
that the height of a 2-3-4 tree lies between log2  n and log4  n.

4. On insert, when going down the tree, if we encounter a node with 
two red children, it represents a four node and should be split. 
There are four cases, depending on the parent of the four node

a) Note: most cases below are actually two separate cases, 
depending on whether the node being split is the left child or 
the right child of its parent.  We consider only the left child 
case; the right child one is a mirror image.

b) In the drawings, we use the following abbreviations

R0, R1, R2: Keys in the root when it is being split
C, C0, C1, C2: Keys in a child when it is being split
P, P0, P1: Keys in the parent of a child being split
T0, T1, T2, T3, T4, T5: subtrees of a node being split 
(can be of any allowed size)

12



c) There is no parent - the node being split is the root of the whole 
tree.

2-3-4 TREE BEFORE          RED-BLACK
                           REPRESENTATION BEFORE

         ------------
         | R0 R1 R2 |             (R1)
         ------------            //  \\
         /   |  |   \          (R0)   (R2)
        T0  T1  T2  T3         /  \    /  \
                              T0  T1  T2  T3

2-3-4 TREE AFTER           RED-BLACK
                           REPRESENTATION AFTER

            ------
            | R1 |                (R1)
            ------               /    \
           /      \            (R0)   (R2)
       ------   ------         /  \   /  \
       | R0 |   | R2 |        T0  T1 T2  T3
       ------   ------
       /    \   /    \
      T0    T1 T2    T3

Observe: The only change is to convert the two red child 
pointers to black!

13



d) The parent is a two node.  (The drawing assumes child being 
split is left child of parent.  The case for the child being the 
right child is symmetrical)

2-3-4 TREE BEFORE          RED-BLACK
                           REPRESENTATION BEFORE

            -----
            | P |               ( P )
            -----               /    \
           /     \            (C1)     T4
   ------------   T4         //  \\
   | C0 C1 C2 |            (C0)  (C2) 
   ------------            /  \  /  \
   /   |  |   \           T0 T1 T2  T3
  T0  T1  T2  T3

2-3-4 TREE AFTER            RED-BLACK
                            REPRESENTATION AFTER

      --------
      | C1 P |                    ( P )
      --------                   //   \
     /    |    \               (C1)     T4
  ------ ------  T4           /    \
  | C0 | | C2 |             (C0)  (C2)                 
  ------ ------             /  \  /   \
  /   |    |   \           T0 T1 T2   T3
  T0   T1   T2  T3 

Observe: the only change needed to implement the split is to 
change the pointer from the parent to the node being split to 
red, and to change the two child pointers of the node being split 
to black!

14



e) The parent is a three node with node being split on its "black" 
side.  (The drawing assumes child being split is left child of 
parent.  The case for the child being the right child is 
symmetrical)

2-3-4 TREE BEFORE           RED-BLACK
                            REPRESENTATION BEFORE
           ---------
           | P0 P1 |
           ---------    
           /   |   \                 (P0)
  ------------ T4  T5              /     \\
  | C0 C1 C2 |                  (C1)      (P1)
  ------------                 //  \\     /  \
  /   |  |   \               (C0)  (C2)  T4   T5
  T0   T1 T2  T3             /  \  /  \
                            T0 T1 T2  T3

2-3-4 TREE AFTER            RED-BLACK
REPRESENTATION AFTER

            ------------
            | C1 P0 P1 |
            ------------
           /    |    |  \             (P0)
    ------   -----  T4  T5          //     \\
    | C0 |   |C2 |                (C1)     (P1) 
    ------   -----               /    \    /  \
    /   |    |   \             (C0)  (C2) T4  T5
   T0   T1   T2  T3            /  \  /  \
                              T0 T1 T2  T3

Observe: This case is basically the same as the previous one.

15



f) The parent is a three node with node being split on its "red"
side.  We have two subcases:

i. Node being split is "outer" child of parent.  (The drawing 
assumes child being split is left child of parent.  The case for 
the child being the right child is symmetrical)

2-3-4 TREE BEFORE           RED-BLACK
                            REPRESENTATION BEFORE

         ---------
         | P0 P1 |                   (P1)
         ---------                  //  \
        /     |   \               (P0)   T5
 ------------ T4  T5             /    \
 | C0 C1 C2 |                  (C1)    T4
 ------------                 //  \\ 
 /   |  |   \               (C0)  (C2)
T0   T1 T2  T3              /  \  /  \
                           T0 T1 T2  T3

2-3-4 TREE AFTER           RED-BLACK
                           REPRESENTATION AFTER

        ------------
        | C1 P0 P1 |  
        ------------  
        /    |   |  \                 (P0)
   ------ ------ T4  T5             //     \\
   | C0 | | C2 |                 (C1)     (P1)
   ------ ------                /    \    /  \ 
   /   |   |   \              (C0)  (C2) T4  T5
 T0   T1  T2  T3              /  \  /  \
                             T0 T1 T2  T3

Observe: This has required a right rotation around the root of 
the parent.  The root of the subtree is now P0, not P1.

16



ii. Node being split is middle child of parent.  (The drawing 
assumes child being split is in left subtree of parent.  The case 
for the child being in the right subtree is symmetrical)

2-3-4 TREE BEFORE          RED-BLACK
                           REPRESENTATION BEFORE

         -----------
         | P0   P1 |                  (P1)
         -----------                 //  \
         /    |     \              (P0)   T5
      T0 ------------ T5          /    \
         | C0 C1 C2 |           T0    (C1)
         ------------                //  \\ 
         /   |  |   \              (C0)  (C2)
        T1   T2 T3  T4             /  \  /  \
                                  T1 T2  T3 T4

2-3-4 TREE AFTER           RED-BLACK
                           REPRESENTATION AFTER

         --------------
         | P0  C1  P1 |                 (C1)
         --------------                //  \\
        /    |   |     \           (P0)    (P1)
      T0 ------ ------ T5         /   \    /   \
         | C0 | | C2 |          T0  (C0)  (C2) T5
         ------  ------             /  \  /  \ 
         /   |   |   \             T1 T2  T3 T4
        T1  T2  T3   T4

Observe: This has required a double rotation - left around the 
left child of the parent, then right around the root of the parent. 
The root of the subtree is now C1, not P1.

g) The parent can never be a four node; if it were, it would have 
already been split when passing through it to the child we are 
now splitting.  Thus, we have covered all possible cases (except 
for mirror images.)

17



5. Finally, we must consider what happens on insert when we reach 
the bottom of the tree.

a) In the 2-3-4 tree, we never add nodes at the bottom of a tree - we 
simply insert a new key into a leaf node.  (Recall that our splitting 
strategy guarantees that each node on the path from the root down 
will be at biggest a three, so there will always be room.)

b) However, in the red-black implementation we actually DO add 
a node in some cases - e.g. when converting a 2-node to a 3-
node or a 3-node to a 4-node.

c) Again there are several cases dependent on the leaf into which 
the key is to go.  (Again, we consider insertion on the left.  
Insertion on the right is the mirror image.)

In the drawings, we use the following abbreviations

E, E0, E1: An existing leaf key
N: the new key

i. The leaf is a two node:  
2-3-4 TREE BEFORE          RED-BLACK 
                           REPRESENTATION BEFORE
    -----
    | E |                     ( E )
    -----                     /   \
    /    \                  NULL   NULL
NULL    NULL

2-3-4 TREE AFTER           RED-BLACK
                           REPRESENTATION AFTER

   -------
   | N E |                    ( E )
   -------                   //   \
   /  |  \                 (N)   NULL
NULL NULL NULL             / \
                        NULL  NULL

18



 ii. The leaf is a three node, with new key going on the "black" 
side:

2-3-4 TREE BEFORE          RED-BLACK
                           REPRESENTATION BEFORE

   ---------
   | E0 E1 |                  (E0)
   ---------                 /   \\
   /   |   \               NULL   (E1)
NULL  NULL  NULL                  /  \
                                NULL  NULL

2-3-4 TREE AFTER           RED-BLACK
                           REPRESENTATION AFTER

  -----------
  | N E0 E1 |                 (E0)
  -----------               //   \\
   /   |  |  \             (N)   (E1)
 NULL NULL NUL NULL       /  \   /  \
                        NULL NULL NULL NULL

iii. The leaf is a three node, with new key going on the outside 
of  "red" side:

2-3-4 TREE BEFORE          RED-BLACK
                           REPRESENTATION BEFORE

  ---------
  | E0 E1 |                  (E1)
  ---------                 //   \
  /   |   \               (E0)  NULL
NULL  NULL  NULL          /  \
                       NULL  NULL

19



2-3-4 TREE AFTER           RED-BLACK
                           REPRESENTATION AFTER

  ------------
  | N E0  E1 |                 (E0)
  ------------               //   \\
 /   |    |  \              (N)   (E1)
NULL NULL NULL NULL        /  \   /  \
                         NULL NULL NULL NULL

Note rotation around root of subtree.

iv. The leaf is a three node, with new key going on the inside of 
"red" side:

2-3-4 TREE BEFORE          RED-BLACK
                           REPRESENTATION BEFORE
   ---------
   | E0 E1 |                   (E1)
   ---------                  //   \
   /   |   \                (E0)  NULL
 NULL  NULL  NULL           /  \ 
                          NULL  NULL

2-3-4 TREE AFTER           RED-BLACK
                           REPRESENTATION AFTER
 ------------
 | E0 N  E1 |                    (N)
 ------------                  //   \\
 /   |    |   \              (E0)   (E1)
NULL NULL NULL NULL          /  \   /  \
                          NULL NULL NULL NULL

 Note double rotation (new node is originally added as a child 
of E0, then E0 subtree is rotated left, then main subtree is 
rotated  right.

v. Of course, the leaf could never be a 4-node, since it would 
already have been split when working down to it.

20


